NPTEL Video Course

Advanced Complex Analysis - Part 2: Singularity at Infinity, Infinity as a
Value, Compact Spaces of Meromorphic Functions for the Spherical Metric and Spherical Derivative, Local Analysis of Normality, Theorems of Marty-Zalcman-Montel-Picard-Royden-Schottky
http://nptel.ac.in/syllabus/111106094/
by Dr. Thiruvalloor Eesanaipaadi Venkata Balaji
Department of Mathematics, IIT-Madras
Mid-Course Exam (Syllabus: Units 1 to 8) Time: Two Hours Maximum Marks: 40

1. State the generalised version of Liouville's theorem.

2 marks
2. Consider the function

$$
f(z)=\frac{z^{2}-2 z+3}{z^{3}+1}
$$

a) What kind of a singular point is ∞ for f ? Why?
b) Write out the singular (principal) and analytic parts of f at ∞.
c) Verify the Residue Theorem for the extended complex plane for f.

7 marks
3. Show that $f_{n}(z)=z^{-n}$ converges normally to ∞ in the unit disc $|z|<1$. Is the convergence uniform? Justify your answer. 5 marks
4. Can a sequence of holomorphic (analytic) functions converge normally in the spherical metric to a strictly meromorphic function? Why?

2 marks
5. What kind of singularity does $f(z)=e^{z}$ have at ∞ ? Why?

3 marks
6. A function $f(z)$ has an isolated singularity at z_{0}. Given that f is a one-to-one mapping in a neighborhood of z_{0}, what kind of singularity can z_{0} be? Why? 3 marks
7. State the Casorati-Weierstrass Theorem. Show that the only one-to-one entire functions onto the complex plane are of the form $f(z)=a z+b, a \neq 0, b \in \mathbb{C}$.

6 marks
8. Let $f(z)=\left(z^{2}+1\right)^{-1}$.
a) Find the spherical derivatives $f^{\#}(0)$ and $f^{\#}(i)$.
b) Identify the extended complex plane with the Riemann sphere under the stereographic projection. Find the arc length of $f(\{z:|z|=1\})$.

7 marks
9. Let $f(z)$ have a pole at z_{0}. Prove that $f^{\#}\left(z_{0}\right)=(1 / f)^{\#}\left(z_{0}\right)$.

5 marks

